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Abstract 

Fingermarks remain as important individual characteristic evidence for identifying individuals during forensic investigations. 

However, the assessment of latent fingermarks can be challenging due to their hidden nature, necessitating the development of 

suitable visualization methods. Currently, the available methods for visualizing fingermarks on wet non-porous objects (e.g., Small 

Particle Reagent) contain hazardous and toxic chemicals. As such, the utilization of Candida rugosa lipase nanoconjugate for 

developing a greener forensic fingermark visualization technology for wet non-porous objects has been suggested. 

Notwithstanding, the utilization of other microbial lipases for the same purpose remains unreported. Considering such an aspect, 

reviewing the potential of the different microbial lipases as candidates for fingermark visualization technology proves relevant. 

Hence, this review article that accentuates the contextual importance of microbial lipases for greener fingermark visualization 

technology complying with the prevailing guidelines and its challenges and future insights for forensic investigations merits 

scientific and forensic considerations. 
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Abstrak 

Cap jari merupakan bukti ciri individu yang penting dalam mengenalpasti individu semasa penyiasatan forensik. Namun, penilaian 

cap jari pendam adalah mencabar kerana sifatnya yang tersembunyi, memerlukan pembangunan kaedah pemvisualan yang sesuai. 

Pada masa ini, kaedah tersedia bagi pemvisualan cap jari pada objek berliang yang basah (contohnya Pembangun Fizikal dan 

Reagen Partikel Kecil) mengandungi bahan kimia berbahaya dan toksik. Justeru, penggunaan lipase Candida rugosa konjugatnano 

bagi membangunkan teknologi pemvisualan cap jari forensik yang lebih hijau untuk objek tidak berliang yang basah telah 

dicadangkan. Walau bagaimanapun, penggunaan lipase mikrob yang lain bagi tujuan yang sama masih tidak dilaporkan. 

Mengambil kira aspek berkenaan, tinjauan potensi pelbagai lipase mikrob sebagai calon untuk teknologi pemvisualan cap jari 

terbukti relevan. Oleh itu, artikel tinjauan ini yang menyerlahkan kepentingan konteks lipase mikrob sebagai teknologi pemvisualan 

cap jari yang lebih hijau dan mematuhi garis panduan lazim, serta cabarannya dan pandangan terkehadapan bagi penyiasatan 

forensik melayakkan pertimbangan saintifik dan forensik. 

 

Kata kunci: sains forensik, cap jari pendam, lipase mikrob, Candida rugosa, Rhizomucor miehei

Introduction 

Fingermark and forensic application 

A world-renowned French criminologist Edmond 

Locard, postulated that every interaction results in the 

presence of identifiable evidence, commonly referred to 

as the Locard's exchange principle [1]. Consequently, 

offenders will inevitably leave trace evidence, like 

fingermarks, at crime scenes [2]. The admission of 

fingermarks as evidence in a court of law has been based 

on three key factors: (a) their unique characteristics, (b) 

their persistence over an individual's lifetime, and (c) the 

availability of a systematic classification of broad ridge 

patterns [3]. The initial premise asserts that each person 

(including those genetically identical) exhibits unique 

fingermarks [4]. The level of distinctiveness heavily 

depends on the minutiae's characteristics, identity, 

quantity, and relative positioning. This is evident in the 

meticulous assessment for comparing the known and 

unknown prints [5]. 

 

The fingermark ridges would remain the same for an 

individual throughout his/her entire life [4], if the 

individual does not sustain a deep-skin injury that causes 

a damage to the dermal papillae. Intriguingly, such an 

injury may result in the development of a new ridge 

characteristic that can prove evidentially helpful in the 

identification process [6]. Although the relatively "less 

sharp" fingermarks are commonly observed among 

elderly people, attributable to the skin's loss of elasticity, 

the general arrangement of friction ridge skin would not 

be affected [7]. In addition, it is important to note that 

fingermarks feature distinct ridge patterns that can be 

methodically categorized into three main types: loops, 

whorls, and arches (Figure 1). The global distribution of 

these patterns is estimated at approximately 60-65%, 30-

35%, and around 5% for loops, whorls and arches, 

correspondingly [5]. Furthermore, it is worth noting that 

these general patterns can be sub-categorized as radial 

and ulnar loops, plain whorl, central pocket loop, double 

loop, accidental, as well as plain and tented arches [4]. 

 

Fingermarks are typically viewed as the imprints of 

friction ridge skin on the fingers, deposited on the 

surface of an object following a touch [8]. In the context 

of forensic applications, fingermarks are regarded as 

latent, patent, and plastic [3,7]. Latent fingermarks are 

frequently discovered at crime scenes [8], and they 

remain an ongoing problem for forensic investigations 

due to their readily unseen nature. Consequently, the 

application of optical, physical, and/or chemical 

visualization techniques is essential for comparison and 

identification [8,9]. Patent fingermarks are readily 

discernible prints that can be transferred onto colored 

media, such as blood and paint. In contrast, plastic 

fingermarks are impressions left on soft and malleable 

surfaces, like putty and wax. The patent and plastic 

fingermarks are more easily analyzed in forensic 

investigations when compared with those of latent 

fingermarks [5,9] (Figure 1).
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Figure 1. (a) The general ridge patterns and (b) types of fingermark patents.

Conventional visualization technology for wet non-

porous objects and its limitation 

The choice of visualization techniques is contingent 

upon the characteristics of the surface under 

investigation, such as its porosity (porous, semi-porous, 

or non- porous), levels of moisture (wet or dry), and 

composition, viz. amino and fatty acids [10]. The order 

in which these techniques are applied also plays a role in 

decision-making [11]. In the context of forensic 

casework, latent fingermarks on wet, non-porous objects 

can be visualized via suspension and chemical 

techniques [12]. Given the suspension techniques for 

visualizing latent fingermarks on wet, non-porous 

surfaces, utilization of several variants (black, white, and 

fluorescence) of Small Particle Reagent (SPR), as well 

as the other powder suspensions, have been reported 

[13]. It has been hypothesized that SPR selectively binds 

to the lipid-soluble components found in fingermarks 

[14,15], corroborated by Goldstone et al. [16], who 

observed sub-optimal results in the visualization of 

latent fingermarks subjected to sea spray aerosol using 

black and white SPR. This outcome could be attributed 

to the degradation of sebaceous components caused by 

exposure to sea spray aerosol.  

 

In the conventional sense, SPR refers to a colloidal 

dispersion comprising minute particles of molybdenum 

disulfide (MoS2) suspended in a combination of water 

and surfactant [11,17]. In addition to the black variant, 

the SPR is available in two more color options: white 

and fluorescent. Tze Lin et al.  [14] proposed using 

fluorescence compounds as a potential contrasting agent 

for dark or multi-colored surfaces. In a study, Dhall and 

Kapoor [18] developed a new fluorescent white SPR 

technique by incorporating rose Bengal dye. They found 

that when visualizing latent fingermarks obtained from 
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destructive crime scene simulations, the use of fine 

suspensions of titanium dioxide TiO2 outperformed the 

other two combinations, namely zinc carbonate and zinc 

oxide. The authors also determined that irrespective of 

the formulations employed, there was a drop in the 

quality of visualized fingermarks as the exposure 

duration to the simulated destructive crime scenes was 

prolonged. Similarly, the study conducted by Rohatgi 

and Kapoor [19]  revealed that an extended duration of 

immersion had a subsequent impact on the visual clarity 

of fingermarks, regardless of the surface types 

employed, as also indicated by Azman et al. [9]. The 

newly developed SPR-basic fuschin dye formulation 

had superior efficacy in detecting latent fingermarks on 

non-porous surfaces submerged in water for a duration 

of 45 days, as compared to the SPR-crystal violet 

formulation. Furthermore, Sodhi and Kaur [20] 

observed that immersing non-porous objects in water for 

up to 36 hours had produced visually distinct, well-

defined, and highly detailed fingermarks. Nevertheless, 

as argued by Azman et al. [21], the authors failed to 

provide explicit details regarding the specific source of 

water utilized (e.g., tap water, pond water, or drainage 

water), as well as the environmental conditions in which 

the experiment was carried out (i.e., indoor or outdoor 

setting). 

 

It is strongly recommended to take precautionary 

measures when dealing with SPR, as its contrasting 

chemicals (MoS2 and TiO2), as well as surfactant 

(sodium tetradecyl sulfate (STS)) and stabilizer 

(ethylene glycol monomethyl ether (DEGEE)), has been 

reportedly demonstrating toxic properties [22,23]. In 

this regard, Racovita [24] reviewed all the pertinent 

published articles relating to TiO2 toxicity, especially 

those of its carcinogenicity, and cautioned that “special 

care is needed when dispersing the catalytic slurries into 

the environment, to ensure the proliferation of 

ecosystems is not impacted long-term by the residual 

accumulation of this mineral”. The observed 

carcinogenicity phenomenon may be attributed to the 

heightened synthesis of intracellular reactive oxygen 

species, as suggested by Gao et al. [25]. Regarding 

MoS2, prolonged exposure to this substance has been 

found to potentially result in chronic respiratory 

symptoms and irritations of the eyes, nose, skin, and 

lungs [26]. Interestingly, to elucidate the etiology of 

diseases that can be associated with the exposure 

towards molybdenum contaminated water, Chen et al. 

[27] utilized zebrafish (Danio rerio) as a physiological 

model. The authors concluded that such an exposure 

would lead to induced oxidative stress and impairment 

of the osmoregulatory functions, evidenced via 

abnormal activities of antioxidant enzymes (viz. 

superoxide dismutase and catalase) as well as 

malondialdehyde. The authors further reported 

inhibition of Na+, K+-ATPase activity in gills and 

muscles even at sub-chronic exposure. In addition, STS 

has been classified as a material falling within the 

category of skin corrosion, specifically subclass 1B 

(Skin Corr. 1B, H314). Regarding DEGEE, a recent 

study by Srivastava et al. [28], examined its potential 

nephrotoxic effects, which were found to vary according 

to the dosage, duration, and method of administration. In 

this context, it is essential to acknowledge the potential 

negative consequences arising from extended exposure 

to these four hazardous chemicals, particularly their 

infiltration into aquatic environments and subsequent 

ecological impact. The rinsing steps required in 

processing latent fingermarks can be correlated with this 

phenomenon [9]. Furthermore, despite SPR 

formulations being routinely used, a thorough 

examination of existing literature indicates the lack of 

precise elucidation about the interactions and 

mechanisms underlying the successful visualization of 

latent fingermarks through the utilization of SPR 

compounds. Given these constraints, it would be 

beneficial to investigate the potential for future 

exploration of the theory around these interactions. 

 

Relevance of microbial lipases as fingermark 

biosensors 

Considering the human and environmental toxicities 

relating to the chronic build-ups of TiO2 (in white SPR) 

and MoS2 (in dark SPR) in the aquatic ecosystem, 

augmented by the presence of surfactants and 

solubilizers viz. STS and DEGEE, researchers have 

advocated the need to develop greener fingermark 

visualization reagents [9]. In this regard, the specific 

attempts made by Azman et al., [9,29] to develop the 

novel green Nanobio-based reagent (NBR) using 

Candida rugosa lipase (CRL)-multiwall carbon 

nanotubes (MWCNTs) (CRL-MWCNTs), as a potential 

fingermark visualization reagent candidate prove 

forensically and scientifically relevant. However, their 

results have shown that the NBR favored groomed 
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fingermarks rather than natural ones, and in several 

instances, SPR performed better than NBR. The efficacy 

of the NBR for better visualizing the former was 

justified by the gas chromatography results, which 

showed the predominant presence of long-chain fatty 

acids (viz. C16, hexadecanoic and C18, octadecanoic 

acids) on their fingermark samples that had been long-

submerged in water [29]. This poses an issue as CRL is 

arguably a type of lipase that prefers shorter-chain fatty 

acids (C4, C8, C10 and C12) [30,31]. Because long 

chain fatty acids predominate in four-weeks water- 

submerged fingermarks [29] the efficiency of CRL as a 

biosensor may be reduced, which explains the lower 

performance of the NBR than SPR in several instances. 

 

Having considered such a premise of argument, 

utilization of lipases with higher preferences towards a 

wider range of fatty acids than that of CRL may prove 

as a diligent approach for developing a versatile, novel 

and greener nano-biobased fingermark visualization 

reagent. In this regard, the Rhizomucor miehei lipase 

(RML) may prove to be a good biosensing agent for 

detecting long-chain fatty acids in extended water-

submerged fingermarks based on its broad fatty acid 

preference, including those between C10- C22 [32]. The 

RML’s strong specificity and substrate versatility make 

it a suitable biosensing agent to detect the above-said 

fatty acids, which tests are normally done under ambient 

conditions. Interestingly, while many positive attributes 

can be associated with RML in biotechnology, its 

utilization as a candidate for detecting and visualizing 

latent fingermarks on non-porous objects submerged in 

aquatic environments remains unreported in the 

literature, so far. 

 

Rationale and scope of this review 

It is important to indicate here that while various review 

articles relating to the conventional fingermark 

visualization technology have been published [9,33,34], 

specific discussions on the contextual importance of 

microbial lipases, in view of its applicability, advantages 

and disadvantages for the same purpose, remains 

unreported. In this context, having a specific discussion 

on the issue would unveil the feasibility of the different 

lipases, what needs to be done to improve their optimum 

synthesis, sensitivity and contrast of the enzyme 

nanoconjugates visualized fingermarks. As such, the 

objective of this review paper is to reposition the 

contextual aspect of microbial lipases as candidates for 

producing green fingermark visualization technologies, 

in compliance with the prevailing guidelines i.e., 

International Fingerprint Research Group (IFRG) [35].  

 

The scope of this review manuscript includes:  

(i) Microbial lipases and its general utilization in 

biotechnology 

(ii) Constituent of the fingermark (water soluble and 

non-water soluble) 

(iii) Utilization of nanobiotechnology for fingermark 

visualization and related issues  

a. Immobilization of CRL onto MWCNTs and its 

statistical optimization as a means to improve 

enzyme stability and fingermarks contrast 

b. RML-nanoconjugate and its potential as a new 

fingermark visualization reagent 

(iv) IFRG guidelines for developing new fingermark 

visualization methods/reagents and 

(v) Challenges and future insights.  

(vi)  

Microbial lipases and its general utilization in 

biotechnology 

Lipases are recognized as the third most extensively 

utilized enzymes in commercial applications (behind 

proteases and carbohydrases), covering the share of over 

20% in the global enzyme industry [36,37]. Azman et al. 

[9], indicated that lipases, also known as triacylglycerol 

acylhydrolases (EC 3.1.1.3), belong to a category of 

hydrolytic enzymes that facilitate the breakdown of 

insoluble triacylglycerol into glycerol, acylglycerols, 

and free fatty acids. Lipases prefer long-chain triacyl-

glycerols, which possess limited solubility in aqueous 

environments. The catalytic reaction of lipases occurs at 

the interface between lipids and water [38]. Owing to 

their exceptional stability under extreme temperatures, 

pH, and organic solvents, lipases have remarkable 

efficacy in facilitating processes in both aqueous and 

non-aqueous environments [39]. According to Khan et 

al. [40], lipases are recognized for possessing a 

hydrophobic lid, which plays a crucial role in facilitating 

their interfacial activity. Lipases have been produced by 

various species of plants, animals, insects, and microbes 

[41], exhibiting significant variations in their 

characteristics [42]. 

 

Being one of the most versatile biocatalysts in 

biotechnology, lipases are used in various industries viz. 

food, detergent, pharmaceutical, leather, textile, 

cosmetic, and biodiesel productions, as well as paper 
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[43–45]. In particular, lipases from microbes (microbial 

lipases) have garnered more substantial industrial 

interests than those of plants and animals, attributable to 

their favorable characteristics and functional efficacy 

under extreme conditions, stability in organic solvents, 

chemo-selectivity and enantio-selectivity, as well as 

they are independent of co-factors [46,47]. Table 1 

represents the different types of microbial lipases as well 

as their industrial applications. Lipases are classified as 

serine hydrolases and their enzymatic functions are 

dependent on a catalytic triad, consisting of Ser-

Asp/Glu-His, which is characterized by a consensus 

sequence (Gly-x-Ser-x-Gly) [36]. The unique α/β 

hydrolase fold is shown by the three-dimensional 

structure of lipases [48].  The α/β hydrolase fold enzyme 

possesses an active region with three catalytic residues: 

the nucleophilic, catalytic acid, and histidine residues 

[36]. 

 

Lipase production has been documented in various 

bacterial genera, including Acinetobacter [49,50], 

Bacillus [51], Burkholderia [52,53], Pseudomonas [54], 

Staphylococcus aureus [55], Microbacterium [56], 

Lactobacillus [57], Serratia [58], Aeromonas [59], 

Arthrobacter woluwensis [60] and Stenotrophomonas  

maltophilia [61] among many others. Nevertheless, it is 

widely acknowledged that the genera Bacillus and 

Pseudomonas are the most notable producers of lipases 

[62]. Bacillus genera, including Bacillus subtilis, B. 

licheniformis, B. pumilus, B. alcalophilus, B. coagulans, 

B. stearothermophilus, Pseudomonas sp., Burkholderia 

sp., and Staphylococcus sp., are among the most 

commercially important lipase producers [63–66]. 

Lipase-producing bacteria have been discovered in 

several environments, including oil industrial wastes, 

vegetable oil processing companies, dairy plants, paper 

industries, and oil-contaminated soil. For instance, while 

Tripathi et al. [56] discovered eight lipase-producing 

bacteria in pulp and paper mills, Bharathi et al. [67] 

reported on the five lipase-producing bacterial strains in 

petrol-spilled soil. 

 

Moreover, several studies have been conducted in recent 

decades on the release of lipase from fungal and yeast 

strains. Several studies have reported the presence of 

lipases derived from several fungi, including Aspergillus 

oryzae [66], Mucor circinelloides [68], Penicillium [69], 

Rhizopus [70,71], Fusarium graminearum [72], and 

Geotrichum candidum [73,74]. Fungal strains have been 

identified as promising producers of lipase, possessing 

distinctive catalytic characteristics that hold significant 

relevance in diverse commercial applications [75]. The 

majority of lipase-producing fungi that are of economic 

and industrial significance can be classified into many 

genera, including Rhizopus sp., Aspergillus sp., 

Penicillium sp., Geotrichum sp., and Mucor sp. [75–77]. 

The lipase production by fungi exhibits variation 

depending on the strain and content of the growth media, 

including the carbon and nitrogen sources [75]. 

Filamentous fungi are recognized as proficient 

producers of lipase among microbial sources, and the 

procedures for extracting, purifying, and processing 

lipases derived from these fungi are comparatively 

straightforward. In a study [77], the authors had 

successfully recovered a strain of Aspergillus aculeatus 

from soil contaminated with dairy manure with the 

lipase generating activity of 9.51 U/mL. In another 

example, Rahman et al. [78] provided a comprehensive 

account of the initial immobilization process of 

Rhizomucor miehei lipase (RML) onto ternary blend 

nanoparticles to enhance the esterification synthesis of 

pentyl valerate (maximum yield of 97.8%). The process 

was optimized by the application of response surface 

methodology (RSM) using a three-level-four-factor 

Box- Behnken design (BBD). 

 

Lipase production from yeast has distinctive uses within 

the chemical, medicinal, and biodiesel production 

sectors [56]. According to a recent literature analysis, it 

has been found that Candida utilis [79], Candida rugosa 

[9,80], Rhodotorula sp., [81], Yarrowia sp., [82] Pichia 

kudriavzevii [83] and Pichia pastoris [84] are considered 

as the most effective and predominant lipase producers. 

Candida sp. has been identified as the most promising 

lipase producer among yeasts [85]. Extensive 

documentations exist regarding the biochemical, 

structural, and lipase catalytic features derived from 

Candida sp. [86]. In a study, He and Tan [87] 

investigated the production of the lipase by Candida sp. 

The researchers reported a measured activity of 9,600 

U/mL. In a study conducted by Rajendran et al. [88], it 

was observed that C. rugosa had an optimal lipase 

activity of 3.8 U/mL.
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Table 1. The different types of microbial lipases, as well as their reported industrial applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microorganisms Applications References 

a. Bacteria 

Acinetobacter ❖ Wastewater treatment 

❖ Soil bioremediation 

[49,93] 

Bacillus ❖ Food industry (Coconut oil cake) [51] 

Burkholderia ❖ Biodiesel production [52,53] 

Pseudomonas ❖ Leather processing 

❖ Biodiesel production 

[54] 

Staphylococcus aureus ❖ Detergent [55] 

Microbacterium ❖ Biodiesel production [56] 

Lactobacillus ❖ Food industry (Flavor esters) [57] 

Serratia ❖ Food industry (Milk isolate) [94] 

Aeromonas ❖ Wastewater treatment [59] 

Arthrobacter woluwensis ❖ Bioconversion of paper 

❖ mill sludge 

[95] 

Stenotrophomonas maltophilia ❖ Wastewater treatment [61] 

Bacillus subtilis ❖ Waste cooking oil [64] 

Bacillus licheniformis ❖ Detergent 

❖ Biodegradation industry 

[66] 

Bacillus pumilus ❖ Food industry [96] 

Bacillus coagulans ❖ Food industry [97] 

Geobacillus stearothermophilus ❖ Detergent formulation [65] 

Pseudomonas sp. ❖ Biodiesel production [63] 

b. Fungi 

Aspergillus oryzae ❖ Waste cooking oil soil [66] 

Mucor circinelloides ❖ Renewable substrates for environmental [68] 

Penicillium ❖ Wastewater treatment [69] 

Rhizopus ❖ Oil contaminated soil [70,71] 

Fusarium graminearum ❖ Food industry [69] 

Geotrichum candidum ❖ Biotechnology Bioremediation 

❖ Detergent 

[73,74] 

Aspergillus aculeatus ❖ Agricultural industry [77] 

Rhizomucor miehei ❖ Biodiesel 

❖ Agro-industrial 

❖ Food Industry 

❖ Forensic application 

[84,98,99] 

c. Yeast 

Candida utilis ❖ Food industry [79] 

Candida rugosa ❖ Biodiesel production 

❖ Forensic application 

[9,80] 

Rhodotorula sp. ❖ Biotechnology [81] 

Yarrowia sp. ❖ Environmental pollutant dyes [82] 

Pichia kudriavzevii ❖ Wastewater treatment [83] 

Pichia pastoris ❖ Biodiesel [84] 
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The lipase-producing microbes are found in many 

habitats such as industrial wastes, vegetable oil mill 

effluent, dairy effluent, oil-contaminated areas, 

decaying foods, and hot springs [36]. Most microbial 

lipases are mostly found outside of the cell and are 

released into the growth media after lipolytic bacteria 

have utilized the components of the medium. This 

release occurs in the presence of appropriate inducer 

substrates and under optimal fermentation conditions 

[36]. Nevertheless, the production of these biocatalysts 

differs depending on the careful choice of microbial 

strains, substrate type, and fermentation method [89]. 

The production of microbial lipase exhibits temporal 

variation, ranging from a span of several hours to several 

days, occurring specifically during the late exponential 

or stationary growth phase [69]. The biocatalysts are 

produced using either submerged or solid-state 

fermentation in various systems, including batch, 

repeated-batch, fed-batch, or continuous systems [69]. 

Nevertheless, submerged fermentation, which entails the 

development of microbes as a suspension in a nutrient-

rich broth, is predominantly favored due to its readily 

controllable process and the substantial quantities of 

extracellular enzymes released into the growth media 

[90]. Furthermore, submerged fermentation offers the 

advantage of achieving a higher level of uniformity in 

the culture media, facilitating the extraction of lipase 

from the fermentation medium, and preventing the 

formation of unwanted metabolites [67]. Approximately 

90% of industrial biocatalysts are produced by 

submerged fermentation [91]. 

 

Constituent of the fingermark (water soluble and 

non-water soluble) 

The natural secretions from the fingertips are derived 

from three distinct types of glands: apocrine, eccrine, 

and sebaceous. Apocrine glands are located in the 

axillary regions of the human body, specifically in the 

armpit and genital regions. The onset of their activity 

occurs at puberty, and their functioning is regulated by 

adrenergic neurons [7]. The apocrine sweat has been 

found to contain proteins, ammonia, carbohydrates, 

ferric ions, cholesterol, and androgen steroids. The 

repeated contact of fingertips to the areas of the body 

containing apocrine sweat glands has the potential to 

generate latent fingermark residue [7]. Moreover, 

eccrine glands are extensively dispersed throughout the 

human body and particularly concentrated on the palmar 

surfaces of hands and the plantar surfaces of feet [5,7]. 

The eccrine glands are responsible for the secretion of 

perspiration, consisting of no more than 20% water [92]. 

These glands produce various inorganic and organic 

compounds as a consequence of overall anabolism and 

catabolism processes [8]. Eccrine sweat is composed of 

proteins, urea, amino acids, uric acid, lactic acid, sugars, 

creatinine, and choline, as documented by previous 

researchers [50]. On the other hand, sebaceous sweat 

comprises glycerides, fatty acids, wax esters, squalene, 

and sterol esters [5]. 

 

The chemical constituents of sweat residue can be 

categorized into two main classes: soluble and insoluble 

in water [8]. The water-soluble constituents include 

amino acids and inorganic ions (e.g., sodium, potassium, 

and chloride) [7]. As for the water-insoluble 

constituents, proteins, lipids, and fats are the major 

components. The water-insoluble constituents can be 

further separated into two subcategories: robust and 

labile [7]. The robust fraction consists of proteins and 

lipo-proteins, whereas the labile fraction is made up of 

saturated and unsaturated fatty acids, triglycerides, and 

lipids. While the labile components experience swift 

chemical changes when exposed to air, the performance 

of these components remains unaffected by their 

exposure to water. On the other hand, robust components 

establish a strong hydrogen bond with the cellulose 

composition of paper, resulting in their prolonged 

retention on its surface [7]. 

 

Extensive studies have been conducted on the analysis 

of amino acids present in fingermark residue, employing 

various analytical techniques. These approaches include 

the use of ninhydrin, 1,8-diazafluoren-9-one (DFO), and 

indanedione [7]. Among these techniques, thin-layer 

chromatography (TLC) has been employed since early 

times, while more recent approaches include laser 

desorption ionization techniques (LDI) or in conjunction 

with a surface-assisted LDI, coupled with a time-of-

flight mass analyzer (TOF) and mass spectrometry (MS) 

or imaging mass spectrometry (IMS). Various solvent 

systems, including sodium hydroxide, ethanol, and 

pyridine, were employed to extract numerous amino 

acids. These amino acids can be further subjected to 

derivatization using ethyl chloroformate, before 

performing instrumental analyses [7]. The interest in 

amino acids in fingermarks can likely be attributed to 
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their status as target compounds for commonly 

employed detection techniques on porous surfaces. 

 

In situations whereby the water-soluble amino acids 

could have been removed or dissolved by water, the 

detection of water-insoluble constituents of fingermarks 

may prove to be a prudent approach for visualization 

[9,100]. Several substances derived from sebaceous 

sources were also detected in the residue of fingermarks. 

Sebum contains components such as glycerides, 

cholesterol, cholesterol esters, and free fatty acids, 

primarily originating from the epidermis (hydrolipidic 

film) [5]. Free fatty acids are the predominant kind of 

lipid molecules that have been detected in fingermark 

residue. The fatty acid species that have been identified 

are octanoic, nonanoic, decanoic, dodecanoic, 

tridecanoic, myristoleic, myristic, pentadecenoic, 

pentadecanoic, palmitoleic, palmitic, 9-hexadecenoic, 

margaric, heptadecenoic, linoleic, oleic, stearic, 

nonadecanoic, eicosanoic, heneicosanoic, docosanoic, 

tricosanoic, tetracosanoic acids [101]. Despite the 

extensive list provided by the previous researchers 

[101], it is interesting that the lipids/fatty acids for wet 

fingermarks are scarcely reported in the literature. 

Specifically, Azman et al. [29] reported that their 

chromatographic analysis of wet fingermarks only 

revealed the presence of hexadecenoic and octadecanoic 

acids as the prevailing lipids on the fingermarks they 

investigated. Therefore, further studies in this regard 

appear pertinent to reveal the types of lipids on 

fingermarks submerged in varying types of water as well 

as durations. The information may prove useful in 

performing computational studies to reveal the potential 

use of such lipids in developing fingermark visualization 

technology and, subsequently, the laboratory proof of 

concept. 

 

Utilization of nanobiotechnology for fingermark 

visualization and related issues 

The discipline of biotechnology encompasses a vast 

array of scientific endeavors, which can be succinctly 

described as advancing technological applications 

rooted in biological principles [78]. Biotechnology is a 

dynamic and interdisciplinary domain that significantly 

influences various sectors, covering agriculture, 

veterinary medicine, pharmaceuticals, and the creation 

of fine chemicals [102]. The technology in question is 

increasingly being recognized as a prominent solution as 

it holds significant potential for addressing pressing 

social issues like safeguarding public health, ensuring an 

adequate supply of food and energy, and protecting the 

environment [102–104]. Taniguchi was the first 

researcher to coin the idea of nanotechnology in 1974, 

and since then, the topic has attracted a great deal of 

attention. The term "nano" originates from the Greek 

language, and it carries the meaning of being little or 

dwarf-like. In a similar vein, nanoparticles can be 

delineated as particles that span a size range of 1 to 100 

nm, with the potential to extend beyond a few hundred 

nm. Nanoparticles are, in fact, assemblages of atoms, 

ions, and molecules, denote a unit of measurement 

equivalent to one billionth of a meter (10-9 m) [78]. As 

such, nanobiotechnology can also be regarded as the 

nexus of nanotechnology and biotechnology, which 

intends to create, improve, and utilize nanoscale 

structures for advanced biotechnology [102]. In fact, 

biological agents such as microbes, enzymes, and plant 

extracts are often coupled with nanoparticles in 

nanobiotechnology to improve industrial and chemical 

processes [10]. 

 

Given the growing need to visualize latent fingermarks 

for forensic identification, as well as the potential 

negative impacts that certain chemicals may exert on 

both human health and the environment, it is 

increasingly important to explore more environmentally 

friendly and safer alternatives for the development of 

fingermark visualizing reagents [21]. Ideally, these 

alternatives would be derived from nanobiotechnology 

methods. However, unlike other fields of study, the 

utilization of nanobiotechnological approaches for the 

development of green forensic fingermark visualization 

technologies has been scarcely reported in the body of 

literature. The relevant literature on the application of 

the nanobiotechnological route of fingermark 

visualization technologies can be grouped into three 

distinct approaches, as detailed below. 

 

The first approach involves the synthesis of nanocarbon 

and/or nanosilica particles from agricultural wastes like 

rice husk [105–107] and bamboo leaves [34] as the by-

product of acid digestion, in view of their utilization as 

green fingermark reagents for visualizing fingermarks 

on dry non-porous and semi-porous objects. Rajan et al. 

[105] indicated that the observed clear and sharp images 

of fingermark ridges prove the selectivity of the 

nanoparticle towards the fingermark residues, in 

addition to being easily synthesized from rice husk, 
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while having low toxicity and energy efficient. The 

approach is also environmentally friendly since it helps 

to transform agricultural waste into a beneficial use. In a 

later study, Rajan et al. [107] successfully synthesized 

and characterized spherical fluorescent silica 

nanoparticles from rice husk using curcumin pigment 

derived from turmeric. The authors reported that the 

fingermark ridges were enhanced with good contrast and 

no excessive background interference, arguing that its 

effectiveness was as good as the commercially available 

fluorescent fingermark reagent. The same group of 

researchers [106] further reported the optimized 

condition for fabricating mono-dispersed spherical silica 

nanoparticles from rice husk as an attempt to improve 

the sensitivity and selectivity of the reagent for 

visualizing latent fingermarks, as well as elucidating the 

factors affecting the precipitation of silica nanoparticle. 

Following their successful attempt, the authors 

accentuated the need to explore the structural changes of 

the silica nanoparticles when subjected to different 

neutralization processes in explaining the variations in 

silica morphology. However, the fact that all the three 

studies did not comply with the prevailing guideline for 

the development of a fingermark reagent by the IFRG 

[35], a specific attempt involving an improved 

experimental design with a larger sample size may prove 

necessary in assessing the suitability and applicability of 

those nanoparticles for routine forensic casework. 

Moreover, while their methods worked on dry objects, 

their suitability for visualizing latent fingermarks on 

non-porous objects submerged in water has not been 

explored. 

 

The second nanobiotechnological approach discovered 

in the literature relates to the application of Candida 

rugose lipase (CRL) nanoconjugate, recently coined as 

the nanobio-based reagent [9,10,14,29,100,108,109]. 

During their first attempt, Azman et al. [108] 

synthesized a novel safranin-tinted CRL nanoconjugates 

reagent that successfully visualized latent fingermarks 

on non-porous objects submerged for 15 days in a 

natural outdoor pond, comparable in performance with 

that of SPR. Nevertheless, the approach seems arduous 

and time-consuming, requiring three distinct solutions 

within a nine-minute timeframe for fingermark 

visualization. Furthermore, it should be noted that the 

methodology employed in this study [108] did not 

adhere to the established parameters set forth by the 

IFRG [4], hence restricting its overall recognition within 

the forensic fingermark community. In their subsequent 

attempt to address the limitations, Azman et al. [9] 

simplified the reagent by factoring out safranin and 

glutaraldehyde, leaving only CRL immobilized onto 

MWCNTs) (CRL-MWCNTs that they coined as NBR. 

Because of the high specificity and selectivity of CRL 

towards the lipid-soluble components of wet 

fingermarks, NBR yielded good quality visualized 

fingermarks over the commercially available 

conventional SPR (average UC comparison scale of +1). 

Characterization of the NBR was made using attenuated 

total reflectance Fourier transform infrared (ATR-

FTIR), and field emission scanning electron microscopy 

(FESEM) was used to confirm the adhesion of NBR onto 

wet fingermarks. The existence of specific lipid-soluble 

components (n-hexadecanoic and n-octadecanoic acids) 

in wet fingermarks was further verified using gas 

chromatography-mass selective detector (GC-MSD) 

analysis. These findings were further utilized to propose 

potential chemical interactions between the NBR 

material, and the lipid-soluble constituents found in wet 

fingermarks. 

 

Next, considering the need to optimize the synthesis 

conditions for NBR, statistical optimization via the Box-

Behnken Design (BBD) of response surface 

methodology (RSM) was attempted [10]. The authors 

reported that the optimal condition (i.e., 100 mg of CRL, 

75 mg of acid-functionalized multi-walled carbon 

nanotubes, and a 5-hour immobilization period) resulted 

in the highest average quality of visualized fingermarks. 

This reagent proved to be sensitive enough to detect 

even faint fingermarks (especially on glass slides), even 

after a duration of four weeks in storage (both 

refrigerated and hot conditions), without the use of any 

preservatives. To replicate a realistic scenario, the 

optimized NBR was then used (in comparison to the 

commonly employed SPR) to efficiently visualize latent 

fingermarks on wet, non-porous surfaces (glass, 

laminated plastics, and aluminium sheets) that were 

submerged for four consecutive weeks in an outdoor 

pond environment. Their results revealed that the NBR 

was better at discovering fingermarks that had been 

submerged for a longer period. This finding supported 

the fact that it could be used for forensic investigations 

since underwater evidence is usually found long after the 

crime. The NBR also scored 76 on the greenness test, 
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which insinuates an "excellent green analysis" [9]. It is 

important to note that their study was partly in Phase 2 

according to the guidelines released by the IFRG [35]. 

Therefore, the NBR needs to undergo two more 

evaluation stages (Phases 3 and 4) before it can be 

commercialized for forensic use. 

 

Ting et al. [100] evaluated the performance of NBR in 

visualizing latent fingermarks on glass slides submerged 

in different levels of water salinity for mimicking 

forensic evidence disposed of in estuaries and swimming 

pools. Their results revealed that the NBR demonstrated 

its potential as a more environmentally friendly 

alternative to SPR in visualizing latent fingermarks on 

glass slides submerged in varying levels of salinity. 

However, the fact that the assessment was made in a 

controlled laboratory condition, the actual ability of the 

NBR to visualize such fingermarks in high salinity water 

remains unknown. In another study, Wahab et al. [10] 

utilized the RSM-optimized potassium triodide-

enhanced MWCNTs supported lipase as a potential 

candidate for green fingermark visualization 

technology. It was evident that adding potassium 

triiodide as the mordant expedited the overall staining 

process. It was found that the mean quality of 

fingermarks was better for samples immersed for one 

day than those of 15 days, indicating the effective usage 

of CRL in the formulation. Therefore, RSM was proven 

to be dependable in forecasting the optimal condition 

that resulted in the highest average fingermark quality 

for both time durations (one and 15 days). 

 

Thirdly, Jiang et al. [110] suggested the application of 

the assembly of black phosphorus quantum dots-doped 

metal-organic framework and silver nanoclusters as a 

versatile enzyme-catalyzed biosensor for solution, 

flexible substrate, and latent fingermark visual detection 

of baicalin. The biosensor exhibits notable attributes 

such as heightened sensitivity, selectivity, and stability 

in detecting baicalin within actual samples. The method 

involved the utilization of a flexible substrate to enable 

the visual detection of baicalin's latent fingermark. This 

was achieved by directly seeing the dual emissive 

fluorescence color hues, which the naked eye could 

discern. This study investigated a straightforward and 

effective semi-quantitative approach for flexible dual 

emissive fluorescence visual detection, which can 

potentially enhance the field of chemo/bio-sensors and 

analytic techniques. Nonetheless, concerted efforts to 

address such issues appear necessary given that this 

relatively new approach was developed without 

considering the common conditions when fingermark-

bearing objects are recovered and the specific need to 

adhere to the prevailing guideline for fingermark reagent 

development. 

 

Immobilization of CRL onto MWCNTs and its 

statistical optimization as a means to improve 

enzyme stability and fingermarks contrast 

A review of the literature reveals that CRL has been the 

only lipase investigated as the candidate for developing 

the green forensic fingermark visualization technology 

on non-porous objects submerged in water, attributable 

to its exceptional natural affinity and specificity for 

lipids [108,111]. In addition to the diminished catalytic 

activity and limited stability of the unbound CRL, the 

lipase molecules exhibited an off-white appearance. It is 

crucial to emphasize that the fundamental objective of 

forensic fingermark visualization is to enhance the 

differentiation between fingermarks and the surface on 

which they are deposited [21]. Hence, in its unbound 

state, the CRL may lack the capacity to offer the 

essential differentiation required to clearly demarcate 

the lipid ridges present in latent fingermarks (off-white 

appearance) despite its notable effectiveness in 

selectively detecting them as a biosensor. 

 

MWCNTs have extensive applications in various 

industrial sectors due to their exceptional characteristics, 

including a substantially large surface area, extremely 

low weight, chemical inertness, and thermal stability 

[112]. Furthermore, the efficacy of these functionalized 

MWCNTs (F-MWCNTs) as nano-supports could be 

enhanced through surface functionalization (e.g., with 

acid) [113]. As a result, such an acid functionalization 

would anchor the CRL to its sidewalls by introducing 

several polar carboxylate groups [108]. In addition to 

facilitating forensic identity through the provision of 

adequate fingermark contrast (as evidenced by its 

blackish appearance), conjugation with F-MWCNTs 

unquestionably enhances the stability, activity, and 

reaction life of the CRL [114], thereby positioning it as 

the forthcoming cutting-edge, robust biocatalyst. For 

example, Azman et al. [10] reported significant 

enhancements in the mean quality of fingermarks when 

CRL was immobilized onto F- MWCNTs. 
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The process of immobilizing enzymes onto different 

nano-supports can be achieved through several methods, 

such as cross-linking, covalent binding, 

inclusion/entrapment, and physical adsorption [115]. 

Physical adsorption is the most straightforward, cost-

effective, and reversible method for immobilizing 

enzymes while maintaining high catalytic activity [116]. 

The technique described in the literature involves 

incubating enzymes and a support matrix for an 

extended duration, facilitating the effective physical 

binding of enzyme molecules to the support matrix 

[114]. In addition, it is possible to achieve physical 

adsorption by interacting ionic forces between enzymes 

and the support matrix. This can be accomplished by 

pre-coupling a ligand with specificity for the target 

enzyme or by conjugating a substance with a binding 

affinity to the support matrix [117]. The process in 

question encompasses the participation of hydrogen 

bonds and hydrophobic interactions [118]. 

 

While the utilization of mild forces for the adsorption of 

CRL onto the matrix may result in the drawback of 

enzyme leaching [119], it also presents the advantage of 

enabling the reloading of lipases into the matrix [116]. 

The said benefit could be valuable in enhancing the 

adjustability of CRL loading onto the F-MWCNTs, 

particularly when there is a requirement for increased 

differentiation to detect the lipid components present in 

latent fingermarks. Furthermore, Binhayeeding et al. 

[120] have documented that the immobilization of CRL 

onto polyhydroxybutyrate particles, achieved by a 

combination of adsorption and cross-linking techniques, 

resulted in the lipase retaining 50% of its catalytic 

activity even after undergoing 14 cycles. It is crucial to 

emphasize that the immobilization of the CRL onto 

FMWCNTs enhances its durability and capacity to 

withstand many freeze-thaw cycles or variations in 

ambient temperatures prior to its application in forensic 

contexts. 

 

Due to its advantages, RSM is a widely used statistical 

method for optimizing chemical and biological 

processes [121,122]. While the one-variable-at-a-time 

(OVAT) strategy for fingermark visualization reagent 

optimization [18,123] has been duly reported, only two 

articles viz [100,109] reported on the application of RSM 

in forensic fingermark research. As such, the synthesis 

of the NBR formulation for latent fingermark 

visualization on wet, non-porous objects involved 

optimization of the required parameters (amounts of 

CRL and F-MWCNTs as well as immobilization 

intervals (using RSM BBD model), as performed by 

Azman et al. [109] detailed below. 

 

The authors argued that while being costly and time-

consuming, the usual OVAT method for optimizing 

experiments may be erroneous by neglecting the 

synergistic effects of other parameters during 

preparation. RSM allows for fewer experimental trials 

by statistically computing interactions among 

independent variables, including their mutual 

interactions (effects of the amount of CRL versus the 

amount of F-MWCNTs and the amount of F-MWCNTs 

versus immobilization interval). Their results revealed 

that the two most effective formulations were: (1) 100 

mg CRL and 60 mg F-MWCNTs with a 10-hour 

immobilization period and (2) 100 mg CRL and 75 mg 

FMWCNTs with a 5-hour immobilization period. Both 

formulations yielded comparable qualitative results (UC 

scale: 0) with a 0% prediction error, validating the BBD 

model's capacity to anticipate optimal circumstances 

with dependability and precision [109]. In this context, 

it is important to indicate that RSM is not the only 

statistical optimization reported in the literature. 

Considering that the Taguchi design-assisted 

optimization for establishing the best immobilization 

conditions to hyperactivate and stabilize the CRL onto 

nano-support has reportedly been successful in 

identifying the best process conditions in several 

industrial reactions [124], its application for the 

development of lipase-based nanoconjugates for 

forensic fingermark technology appears to have a 

scientific appeal. 

 

RML-nanoconjugate and its potential as a new 

fingermark visualization reagent 

In light of the studies conducted by Azman et al.  

[9,21,29] it is evident that the NBR preferred groomed 

fingermarks rather than those that occurred naturally. 

Furthermore, their results from chromatographic 

analysis revealed a significant abundance of long-chain 

fatty acids, specifically hexadecanoic acid (C16) and 

octadecanoic acid (C18), on the fingermark samples that 

had undergone prolonged immersion in water [29]. This 

situation presents a challenge as it may be argued that 

CRL is a lipase variant that prefers shorter-chain fatty 
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acids, specifically those with carbon chain lengths of C4, 

C8, C10, and C12 [30,31]. The prevalence of long-chain 

fatty acids in fingermarks submerged in water for four 

weeks [29]  may lead to a decrease in the effectiveness 

of CRL as a biosensor. This could account for the 

comparatively lower NBR performance in certain cases 

compared to SPR observable in their studies 

[9,21,29,109,125]. Considering such a limitation, it is 

suggested that employing microbial lipases with greater 

affinity for a broader spectrum of fatty acids than that of 

CRL could be a sensible strategy for developing a new, 

innovative, and environmentally friendly nano-biobased 

reagent for fingermark visualization.  

 

In this context, RML exhibits a potential as a biosensing 

agent for the detection of long-chain fatty acids in water-

submerged fingermarks due to its wide range of fatty 

acid recognition, encompassing those within the C10-

C22 range [32]. The excellent specificity and substrate 

diversity of the RML render it as a useful biosensing 

agent for detecting the aforementioned fatty acids, often 

conducted under ambient settings. It is noteworthy that 

although RML in biotechnology possesses numerous 

favorable benefits, its application as a potential method 

for unveiling hidden fingermarks on non-porous items 

submerged in aquatic environments has not been 

documented in the existing scholarly literature. RML is 

widely accessible commercially, existing in soluble and 

immobilized states. The enzyme comprises a solitary 

polypeptide chain comprising 269 amino acid residues. 

It possesses a molecular weight of 31,600 Da and 

exhibits an isoelectric point (pI) of 3.8. RML is acidic as 

a lipase due to its low pI. This characteristic is attributed 

to the presence of 35 aspartic and glutamic acid residues 

in the enzyme, which collectively surpass the combined 

count of 7 and 10 residues for lysine and arginine, 

respectively [126]. RML exhibits notable activity and 

stability as a mesophilic lipase, making it a favorable 

choice for implementation as an industrial biocatalyst, 

compared to alternative commercially available lipases 

[127]. The superimposition of RML structure (open and 

closed confirmations) are illustrated in Figure 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Superimposition of open (yellow, PDB ID: 4TGL) and closed (purple, PDB ID: 3TGL) conformations of 

the RML using pyMOL software.

 

 

RML demonstrated considerable enzymatic activity 

and stability in low water activity. Consequently, the 

inclusion of a dehydrating agent in the reaction media 

is essential to enhance the enzymatic activity of RML 

to its maximum potential. The tendency of RML to 

aggregate and be immiscible in aqueous media can be 
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addressed by incorporating detergent or surfactant 

compounds, such as sodium cholate, Tween 80, or 

Tween 20 [78]. These compounds can activate the 

enzyme, promoting the dispersion of RML in organic 

media. This activation leads to a significant increase 

in RML activity, up to three-fold, as demonstrated by 

Rodrigues and Fernandez-Lafuente [128]. An 

additional significant aspect in enhancing the 

interfacial activity of RML involves the utilization of 

a hinge-type motion of a single helix (residues 83-94). 

This helix acts as a lid, effectively covering the active 

site. The introduction of a hydrophobic component or 

organic solvent is necessary to displace the lid and 

expose the active site, as this process holds both 

mechanistic and kinetic significance for RML [129].  

 

IFRG guidelines for developing new fingermark 

visualization methods/reagents 

The guideline for the evaluation of fingermark detection 

techniques, as outlined by the IFRG [35], was developed 

through a collaborative process involving the 

participation of the members, and it received official 

approval from the IFRG Steering Committee. The scope 

and purposes as well as the description and requirement 

for each of the four main research phases, are detailed 

below. The scope and purpose of the document relate to 

the effort to provide the “best practice” standards for 

evaluating new or modified fingermark detection 

methods/reagents from proving the concept to real 

application in forensic casework. These standards are 

not prescriptive, but substantial deviations from them 

should be clearly noted and explained in presentations 

and publications. The document also specifies aspects 

relating to the technology readiness levels, varying 

scales for assessing the quality of the new or modified 

fingermark detection process, and key variables 

(environmental conditions, fingermark composition and 

age, objects, development and visualization conditions, 

as well as research implications). Nevertheless, the 

provided guidance lacks instructions on how to prepare 

split fingermarks on challenging objects like knives, 

which is necessary to minimize the inconsistencies 

within a single donor when employing two different 

visualization approaches. Given the prevalence of 

knives as weapons in criminal activities, it is imperative 

to establish a procedure for preparing split fingermarks 

on blades to propose innovative or updated visualization 

methods [21]. 

 

Another matter to take into account is the preference of 

the IFRG [35] for the utilization of natural fingermarks 

over groomed ones, as stipulated in all four stages of 

assessment. The relevance of utilizing both natural and 

groomed fingermarks arises from the observation that 

offenders while experiencing uneasiness and agitation 

during the commission of a crime, may perspire and 

inadvertently come into contact with their faces [9]. This 

contact can result in the deposition of sebaceous-rich 

fingermarks [29,89]. Given the potential variations in 

chemical composition between natural and groomed 

fingermarks, any proposed revisions to the guideline 

should consider this element, with a particular focus on 

the practical applicability of the procedure in real-life 

crime scenarios. 

 

For every research phase, specifications on the number 

of donors, number of objects, collection of fingermarks, 

natural versus groomed fingermarks and standards, as 

well as quality assessment and reporting procedures, are 

detailed [35]. Phase 1 study is a pilot study (an initial 

assessment of a novel fingermark enhancement method).  

Phase 1 requirements encompass the inclusion of 3-5 

donors, with a need for donors representing weak, 

medium, and strong fingermark donors. Additionally, 1-

3 clean objects with low interference should be utilized 

unless the proposed technique specifically targets 

difficult objects. Donors should receive instructions on 

depositing fingermarks, and assistance should be offered 

as needed. It is preferable to use natural fingermarks and 

avoid groomed marks whenever possible. Fingermarks 

should typically be allowed to age for a minimum of 24 

hours before development, and the actual age of the 

fingermarks prior to treatment should be documented 

and reported. Furthermore, the inclusion of a 

preliminary performance comparison against relevant 

routine detection methods via suitable comparative 

scales (e.g., modified-Centre for Applied Science and 

Technology (m- CAST) and University of Canberra 

(UC) comparative scales), is necessary. 

 

Bandey and Gibson [130] described that the m-CAST 

absolute scale categorized the quality of fingermarks 

into five different grades (0,1,2,3, and 4). While grade 

‘0’ refers to no fingermark development, the signs of 

contact (with less than 1/3 with continuous ridges) is 

graded as ‘1’. Whenever 1/3 – 2/3 of the mark with 



Malaysian Journal of Analytical Sciences, Vol 28 No 5 (2024): 1184 - 1209 

 

1198 

 

continuous ridges can be observed, the quality of the 

fingermarks is graded as ‘2’; an imperfect mark with 

more than 2/3 of continuous ridges is considered as 

grade ‘3’. Grade 4 refers to the full development of a 

clear fingermark with continuous ridges [130]. 

 

McLaren et al. [131] described a specific scale for 

comparing the performance of two different fingermark 

visualization methods known as the UC comparative 

scale. The assessment of the quality is made based on the 

scoring system (+2, +1, 0, -1 and -2) detailed below:  

 

(a) +2: half-impression developed by method A 

exhibits far greater ridge detail and/or contrast 

than the corresponding half-impression 

developed by method B. 

(b) +1: half-impression developed by method A 

exhibits slightly greater ridge detail and/or 

contrast than the corresponding half-impression 

developed by method B. 

(c) 0: no significant difference between the 

corresponding half-impressions. 

(d) -1: half-impression developed by method B 

exhibits slightly greater ridge detail and/or 

contrast than the corresponding half-impression 

developed by method A. 

(e) -2: half-impression developed by method B 

exhibits far greater ridge detail and/or contrast 

than the corresponding half-impression 

developed by method A. 

 

When a novel reagent or procedure has been identified 

as intriguing, it is necessary to subject it to further 

examination and refinement over a range of 

experimental circumstances (Phase 2). The objectives of 

Phase 2 research are (a) to ascertain the optimal reagent 

formulation, development conditions, and observation 

parameters, (b) to thoroughly evaluate the strength, 

responsiveness, and specificity of the novel reagent in 

comparison to established methodologies and (c) to 

provide a thoughtful analysis of the performance of the 

novel reagent when integrated into pre- existing 

enhancing sequences. As such, Phase 2 research shall 

involve a sample size of 5-15 donors, preferably with 

varying concentrations of fingermark secretions 

achieved using depletion sets. The research shall also 

include more than 3 typical objects that vary in difficulty 

or background interference. Donors will be provided 

with instructions on how to deposit fingermarks, and 

assistance will be given as needed. Only natural 

fingermarks will be used unless extreme weather 

conditions, or the specific focus of the research 

necessitates otherwise. Fingermarks will be collected 

and stored for different time periods, depending on the 

duration of the project and the specific method or 

scenario under consideration. The quality of fingermark 

development will be assessed using quantitative 

absolute and/or comparative assessment scales. 

 

The process of designing a Phase 3 validation project 

necessitates extensive planning and a strong partnership 

between research institutions and operational 

laboratories, particularly when conducted by academic 

researchers. This collaboration is crucial to guarantee the 

operational relevance of the validation trials. To 

effectively evaluate and authenticate the efficacy of a 

fingermark enhancement procedure, it is imperative to 

factor in the following experimental characteristics. A 

minimum of 20 donors, ideally chosen through random 

selection from the population, should be included in the 

study. The selection process should involve the 

processing of anonymous objects that are handled 

randomly. The number of objects used for the study 

should be determined based on the project's scope and 

the specific technique being evaluated. These objects 

should be representative of typical samples encountered 

in operational scenarios. The collection of natural 

fingermarks should be conducted in a blind manner, 

ensuring that the individuals collecting the fingermarks 

are unaware of the donor's identity. The samples used in 

the study should be aged for various periods to simulate 

different casework scenarios. An absolute assessment 

scale should be employed to assess the quality of 

fingermark development. If possible, practitioners with 

expertise in this field should be involved in the 

assessment process. Furthermore, the new technique 

should be evaluated both in terms of its individual 

performance and performance when used in conjunction 

with established methods relevant to the study. 

 

Phase 4 initiatives incorporate the refined formulations 

and development methodologies derived from Phases 2 

and 3. In cases where operational laboratories have been 

engaged in the preceding phases, Phase 4 is frequently 

regarded as an extension of, or integration with, Phase 3. 

The conclusive evaluation stage holds significant 

importance in establishing the suitability of a novel 

methodology in real-life casework scenarios, hence 
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determining its compatibility with the laboratory's 

regular operating procedures. Phase 4 necessitates the 

evaluation of a novel methodology over a substantial 

number of cases and potentially across numerous 

laboratories in the context of national agencies or 

geographically diverse jurisdictions within a specified 

trial duration. During this time frame, a comparative 

analysis is conducted between the efficacy of the novel 

methodology and the efficacy of existing 

methodologies. In the case of research conducted in 

many places, it is important to acknowledge that the 

laboratory conditions in each setting may vary 

considerably, potentially exerting an influence on the 

obtained results. In situations where this may pose a 

concern, it is advisable to document the temperature and 

humidity levels within each laboratory and storage 

facility. When assessing field-based approaches, it is 

important to document environmental circumstances to 

ascertain whether they have any influence on the 

obtained outcomes. The provided material possesses 

significant value in terms of evaluating and documenting 

the strength and reliability of a novel methodology. The 

participating practitioners should evaluate and compare 

each technique, factoring the average number of usable 

fingermarks visualized on each exhibit using each 

technique. If the procedures are arranged sequentially, 

the experimental method can yield a percentage 

representing the usable marks created within the 

sequence. At this point of the research, an absolute 

scoring system can be implemented to indicate overall 

fingermark quality, although it is not obligatory. 

 

Challenges and future insights 

Chiefly, the utilization of environmentally friendly 

lipase-based technology for the visualization of latent 

fingermarks on wet, non-porous objects is a relatively 

recent development. It is imperative to conduct 

additional research to identify the specific components 

that lipases target and quantify their presence. This is 

crucial because the acceptance of forensic evidence in 

legal proceedings relies on the technology being widely 

recognized by the scientific community, as per the Frye 

standard [5]. As for the Daubert standard, the proposed 

scientific technology approach must be supported by 

solid empirical evidence, whereby the role as the 

gatekeeper is executed by the judge [5]. In addition, it is 

important to note that the suggested mechanism of 

interactions between the CRL and fatty acids was 

derived from the analysis of fatty acids present in 

fingermarks that were submerged in tap water for 30 

days, conducted in a controlled laboratory environment. 

Furthermore, the previous study [72] suffered from 

several constraints, including the exclusive utilization of 

groomed fingermarks obtained from a limited number of 

donors, i.e., only two individuals for each gender.  

 

Secondly, underwater forensic evidence is typically 

recovered sometime after the crime/disposal [132], and 

studies have shown that fatty acid composition changes 

over time [133], requiring further research into 

fingermark constituent degradation and aging behavior. 

Since salt or freshwater may affect fingermark 

degradation differently, evidence collected in such 

environments may affect the presence of 

available/remaining fatty acids. For example, high-

salinity water may degrade fingermarks faster than 

freshwater [134]; therefore, considerable changes in 

fatty acids and their respective concentrations during a 

longer period of immersion in water or even in different 

types of water cannot be excluded. As such, the 

suggested quantitative study is critical for understanding 

the substrate preference in aged fingermarks 

visualizations by lipases, especially on the aging 

behavior of natural and groomed fingermarks on wet 

objects. 

 

Next, the NBR developed by the previous researchers 

only works on white or light-colored objects. Since 

forensic evidence can be polychromatic, suitable 

improvements on the NBR to increase fingermark 

contrast appear necessary. Attaching a fluorescent 

substance to the NBR would improve fingermark 

contrast on polychromatic objects recovered from 

aquatic environments like lakes and rivers. Beyond that, 

the performance of the NBR in sequence with other 

relevant fingermark visualization methods has not been 

thoroughly investigated. This is of tremendous value in 

forensic investigations, particularly if the NBR can 

visualize additional fingermarks that cannot be seen 

using other methods. When the reagent is to be utilized 

during actual forensic casework, these evaluations are 

essential in tilting the scales in favor of the NBR. 

 

Subsequently, it is important to emphasize that the CRL 

prefers for fatty acids with chain lengths of C4, C8, C10, 

and C12 [86]. Given that the predominant fatty acids 
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included in fingermarks are often of longer carbon chain 

lengths, specifically C14-C18 [101], the application of 

recombinant lipases could potentially yield 

advantageous outcomes within this particular domain. 

Engineered custom lipases of this nature might reveal 

the potential to address the non-reproducibility and 

inconsistency concerns associated with crude lipases. 

Moreover, it has been acknowledged that the 

engineering of recombinant lipases is a more viable 

approach [135], which warrants further investigation in 

the context of forensic applications. Lastly, because the 

NBR developed by Azman et al. [9] appears to be 

partially at Phase 2 of the four phases prescribed by the 

IFRG [35] guideline, it must go through two more 

phases of evaluations (Phases 3 and 4) before the true 

value of the reagent can be advocated for use in forensic 

casework applications. Figure 3 depicts the relevance of 

microbial lipases as candidates for fingermarks 

visualization reagent, as well as their challenges and 

future insight in developing environmentally benign 

fingermark visualization reagents for forensic 

application. 

 

Conclusion 

Fingermarks analysis has long been regarded as a highly 

significant approach in the field of forensic 

investigations, serving as a reliable method for human 

identification. The utilization of SPR for visualizing 

latent fingermarks on wet, non-porous objects has 

frequently been proposed for application in laboratory 

and crime scene settings. Nevertheless, due to the 

predominant composition of SPR, which consists of 

carcinogenic and poisonous substances, it is imperative 

to decrease its regular utilization. In the present setting, 

it is imperative to develop a sustainable substitute 

reagent that aligns with the principles of green 

chemistry. The immobilized CRL has been effectively 

utilized as a biosensor for lipid constituents in 

fingermarks, and this progress can be attributed to the 

implementation of statistically assisted optimization of 

RSM. Nevertheless, it is important to acknowledge that 

CRL has several limitations, particularly its limited 

sensitivity towards long-chain fatty acids. This lack of 

specificity poses a potential risk to its forensic utility. In 

this context, employing alternative microbial lipases, 

such as RML, in the form of nanoconjugates with F-

MWCNTs, could offer benefits. 

 

In order to ensure and uphold justice, the admissibility 

of fingermarks as evidence in a court of law necessitates 

the analysis of such evidence through methodologies 

widely acknowledged by the pertinent scientific 

community.    Regrettably, the existing literature lacks 

sufficient explanations on how visualization reagents 

interact with the constituents of fingermarks. Given this 

perspective, it is important to evaluate the scientific and 

forensic implications while making deliberate efforts to 

offer information through bioinformatics. Furthermore, 

the data collected in such studies would serve as a 

foundation for future advancements in developing 

cutting-edge green fingermark technology for use in 

forensic investigations

.
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Figure 3. The relevance of microbial lipases as candidates for fingermarks visualization reagent as well as their challenges and future insight. 

 

Red dotted box represents aspects that worth investigation. 

Thumb up :refers to positive attributes of methods.  

Thumb down : refers to negative  attributes of methods. 
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